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.~ Several methods are discussed for confidence set estimation of a change—point in a se- -
. . 3 . 3 3 --~ l.
quence of independent observations from completely specified distributions. The method based ‘_:-:'::
on the likelihood ratio statistic is extended to the case of independent observations from a one ]::."_-\.::-"
parameter exponential family. Joint confidence sets for the change-point and the parameters Sese
of the exponential family are also considered. — ‘r '4
. RN
RN
LA QRN
1. Introduction. e

)
Syl

Ol
K| o ow )
m‘h)

Let z1,23,...,2Zm be independent random variables with zy,...,z; having distribution .::-.:::
F and zj41,...,Zm having distribution G # F. The change-point j, where the distribution K ~

o
l‘I'l 4

shifts from F to G, is an unknown parameter, to be estimated by a confidence set. In general,

¥ i
the distributions F and G may be known, completely unknown, or specified up to an unknown L
g
parameter. In this paper I discuss several procedures for the artificial but informative case \.ﬁ_‘: -
NN
of completely specified F and G, and then develop more completely a method based on the '*::'f':‘

o
>
.
A
A

likelihood ratio statistic for the case where F and G come from a common one parameter

exponential family of distributions. Precedent for the approach taken here is found in Worsley .:::::':::
heSa
(1986) and Siegmund (1986). e
AN

Section 2 is concerned with known F and G. In addition it is assumed that the sequence

of observations is actually doubly infinite,...z_y, Zo, 21,.... This additional assumption has v':._:".:—.'
little effect if m is large and it is known that j is not close to 1 nor to m, because observations I
far from the change—point carry little information about the location of the change—point.

The virtue of the assumption is that it makes j into a location parameter and provides an B -
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h
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exact ancillary statistic: the class of shift invariant events. Five confidence set estimates are

28
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discussed. Three are studied by Siegmund (1986), in the context of estimating a change-point
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in the drift of Brownian motion. The fourth is essentially the suggestion of Cobb (1978),
and the fifth has smallest expected size among all shift invariant confidence sets. Section 3

compares the different confidence sets.

Sections 4 and 5 are concerned with the case that F and G are imbedded in a common one
parameter exponential family, whose parametesr # is unknown. Section 4 develops a method
based on the likelihood ratio statistic for obtaining exact confidence sets for 7. A new, fairly
simple approximation is suggested for the required probability calculation. The approximation
is illustrated on the coal mining accident data along the lines discussed by Worsley (1986).
Section 5 involves the special case of normal distributions with 5 denoting a change in the
mean. The likelihood ratio method is extended to give a joint confidence set for § and the

difference between the two means.

2. The Cases of Known F and G.

Let Z devote the integers and let je Z . Let z,, ne Z be a sequence of independent
random variables with z, having the distribution function F or G according as n < j or
n > j. The distributions F and G are assumed known; the change—point j is unknown. Let
P; denote the probability measure induced by this model on the space of infinite sequences
w = (zn, n€eZ ). Let o denote the shift operator, i.e., the mapping which takes w = (z,, ne Z )
into ow = (Zn+1,n€ Z ). Note that the family {P;, je Z } is a translation family in the sense

that for any event B and je Z

P;(B) = Pj(weB) = Py(0~'weB) = Py(o’ B).
Let z, = log{dG(zn)/dF(z,)} denote the log likelihood ratio of z,, and put

Sp=21+...+ 24 (n21)
=—(z,.+1+...+20) (ns—l)
=0 (n=0)
Let & = dP;/dP, denote the likelihood function at i. By considering the finite sequence

Zn, =N < n < N, and then letting N — 0o, one can easily show that & = exp(S;). Under P,
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the log likelihood process (.§,,, ne Z ) is a random walk satisfying Sy = 0 and having increments

Sp — Sn-1 with mean [ log(dG/dF)dF < 0 for n > 0 and [ log(dF/dG)dF > 0 for n < 0.

The maximum likelihood estimator for j is the value ; where the process (5',;, neZ)
assumes its maximum value. In general this value need not be unique, but to avoid technicalities
it is assumed to be so in what follows. In the space of the sufficient statistic (.§,., ne Z ), the

sequence Y; = S~3. T S~3. te Z , is ancillary.

In the context of estimating a change—point in the drift of a Brownian motion process,
Siegmund (1986) compares the following three confidence sets for the change-point j. The
first two were discussed earlier by Hinkley (1970, 1972), who, however, made no attempt to

establish their relative efficiency.

A

(i) Since 7 — j is pivotal, if r = r, is defined by Po(|7| > r) = @, then C; = [7 — r]+ r]

Ay
+
@

is a (1 — a) 100% confidence interval.

AT

(ii) Let A; devote the acceptance region of a size « likelihood ratio test of the hypothesis

-.-l-‘.”--,
!

that the change—point is 7, i.e., A; = {max, S, — 5; < n}, where n = n, satisfies P;(4;) = Ao
. NN
{Po(maxn30 Sn < 7)}? = 1—a. Then the set Cz of ne Z such that the observed sample point :i:'::'
. v
weAp is a (1~ a) 100% confidence set. Since the log likelihood process (Sp, neZ ) is in general e' T
multimodal, this confidence set is not in general an interval. :':f.-;j:j:'
(iii) A modification of the preceding method which always yields an interval is to define
L(R) = min(max){n : §p > max §; - q'},
which for suitable n' < n satisfies
P(L<j<R)=P(L<O0<R)=1-2P(R<0)=1-a. P
Lf:'.'-:'_'.-:j
The next possibility is essentially the suggestion of Cobb (1978). In analogy with Fisher’s ," =
(1934) observation that the conditional probability density of the maximum likelihood estima- s
AN,
tor of a location parameter given the sample spacings, which are ancillary in that case, is the :{.:-f.:::.:
A
normalized likelihood function, one may show by a direct calculation that RN
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Pi(G-j=nlY,ieZ)=R(G=nlY;ieZ)=exp (5, _,) /2 exp(5), (1)

where 3},5, denotes the observed value of 3 Let

pn=exp(5n)/ D _exp(5i), ne Z . (2)

(iv) It follows from (1) that a confidence set of conditional coverage probability 1 — a can
be formed as follows. Order the p, in (2) as p(1) 2 p(z) > .. .. Construct the set C, by putting
the index n; corresponding to p(;) in Cy and continuing to add points ny, ..., n; corresponding
to p(2), - - -, P(k) as long as Zis k P() < 1— a. Note that for a Bayesian with a uniform prior on
Z,

pn=pr(j = nlzi,ic Z)

and hence the set Cy is a highest posterior probability credible set for 5. In fact, even without
the explicit evaluation in (1), one knows from a general theorem of Stein (1965) and Hora and

Buehler (1966) that the highhest posterior credible set for j is also a confidence set.

(v) One can also obtain an unconditional confidence set from the formal posterior prob-

abilities (p,,ne Z ) in (2) as follows: let ¢ be such that

P,-{p,- 2c}= Po{Zexp(g',,) < c'l} =1-a, 3)

and Cs = {n: p, > c}. Then Cs is a (1 — a) 100% confidence set, which according to a general

theorem of Hooper (1982) or alternatively by a simple Neyman-Pearson argument has smallest

expected size among all shift equivariant confidence sets.

Remarks. The confidence sets (ii), (iv), and (v) all order the parameter values for inclusion
according to the value of the likelihood function. Where they disagree is where to draw the

line between inclusion and exclusion. For those who strongly prefer a confidence interval to a

3
N

4
<
4
o

LA l" N
R 'v':v'-

Yoo

.

AP
;‘. ‘y
XS

o [

e
g "‘ "-..'u .I... N

B FRPRTR

*9 .) "l"","
N A

?:L" '. A
I

]

e



k]

Ehy  CE NS

»

:‘1"1“

Al

o2

R ] .
VY L P AR

e

77 e Ta

... ...
..‘l.’.“.
LI )

i N

B,

4

WSS RTINS BRSNS

T
J"Jv‘

SRRl

possibly disconnected confidence set, (iii) appears to be a reasonable modification of (ii). It is

possible to give analogous modifications of (iv) and (v).

Of these five confidence sets, all except for (iv) require computation of a sampling distri-

bution. Approximations are suggested in the following section.

3. Comparisons.

The purpose of this section is to compare the expected size of the various confidence sets
proposed in Section 2. Since the case of known G and F in artificially simple and our main goal
is insight into the case where G and F contain unknown nuisance parameters, there seems to
be little harm in simplifying the technical problems somewhat by assuming that F is N(0,1)
and G is N(6,1) for a known § > 0.

Siegmund (1986) considers the computationally simpler case of a Brownian motion process
and shows that the length of the confidence interval defined in (i) is substantially longer than
the expected size of the confidence sets in (ii) and (iii).

In the present context it can be shown as a — 0 that the expected sizes of the confidence
sets in (ii) - (v) are all ~ 462 log a™!, whereas the length of the interval in (i) is ~ 86~2loga~!.
Hence the confidence interval C; defined in (i) appears not to be competitive with the others

and will not be considered further.

Although Siegmund’s (1986) comparison of (ii) and (iii) favors (ii), the difference is not
large. In fact there is a transcription error in passing from the first to the second line of the
display following (3.15) of Siegmund (1986), and consequently the difference in the numerical
example between methods (ii) and (iii) is smaller than stated there. Since one suspects that
the rapid fluctuations of Brownian motion may account for some of that difference, and since
(iii) is the only remaining interval estimate and is a surrogate for interval modifications of (iv)
and (v), it seems reasonable to make a comparison of (ii) and (iii) in the present discrete time
setting. Theorem 1 below gives asymptotic expansions as o — 0 of the expected size of the

confidence sets (ii) and (iii).

It seems difficult to give comparably precise expansions for (iv) and (v). Hence (ii),
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(iv), and (v) are compared below in a Monte Carlo experiment, which also shows that the

approximations given in Theorem 1 are reasonably accurate.

We begin with approximations for the coverage probability of (ii) and (iii). Let ® be the

standard normal distribution function and

v(z) = 2z % exp {—2in’1<§<—z\/r_:/2) } (z > 0). (4)
1

For computational purposes it usually suffices to use the small z approximation (Siegmund,

1985, p. 219)

v(z) = exp(—pz) + ofz?) (z —0), (5)

where p = ,583. For the normally distributed z,,ne Z , under consideration here S, =
§(né/2 — S,),n = 0,1,..., where S, = z; + ...+ z,. It follows from a classical result of

Cramér (cf. Siegmund, 1985, (8.49)) that

Py ('.’.‘QS‘ Sa2> n) ~v(8)exp(-n)  (n— oo) (6)

and hence by (5) for A; defined in (ii) above

P;(A;) = {1 — exp(—n — p5)}>. (7)

By conditioning on maxp>o0 S‘,,, one may show for R defined in (iii),

_ o -4 [}
P(R<0)=PF (r'r‘lg.a( Sp > X'I‘lgé(sn + 17) (8)

~ v(8) exp(-n')Eo{exp (— max 5..) }

n' — oco. It is possible to compute the expectation on the right hand side of (8) numerically or

give a small § expansion analogous to (5), but for our purposes it seems adequate to pretend

that (6) is an equality, which leads to the approximation
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P;(0 AL, R]) = 2exp(—n' — p8){1 — exp(—p5)/2}. (9)

The following theorem gives an asymptotic expansion as a — 0 of the expected size of
C; defined in (ii) and [L, R| defined in (iii). It will be convenient to use the notation |y| =

integer part of y, |C| = number of elements in the set C, and M = sup,5, Sn.

Theorem 1. Let C; be the confidence set defined in (ii) and [L, R] the confidence interval
defined in (iii). As n — oo

Ej|Ca| = 2|27/6%| + 4/6°

+tHRTY S YL TR YV BTN SFEYN EE eV W

- 457! fow{zpo(M > z) — P}(M > z)}dz + o(1),

and as ' — oo

E;j(R - L) = 2|2n'/6%] + 467

— 457! /'°° /°° Po(Medy){2Ps(M > z + y) — P¢(M > z + y) }dz + o(1).
o Jo

A proof is sketched in an appendix.

To obtain easily evaluated approximations to the integrals appearing in these expressions,

one may again pretend that (6) is an equality and use (5). This leads to

S TCHEKATI 0 O ONE WAL TN S 3 7JEHEENNN" Y22 EREYT

E;|Ca] = 2(2n/6%] +267%(2 — 467 + %) (10)
and

E;j(R—- L) 22(29'/6%| +2672(2 — de™#° + 3¢7%% — 2¢73¢¢/3). (11) g

R

Table 1 contains some numerical examples. It indicates that there is essentially no dif- :':-:
B
St T el
. ference between the expected size of the confidence sets (ii) and (iii). On the basis of these S _'."-:.‘_-r}
A
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results a statistician who strongly prefers a confidence interval to the generally disconnected

likelihood ratio confidence set should feel comfortable in imposing that constraint.

Table 1.
Expected Size of Confidence Sets (ii) and (iii)

o § n(7) E|C|(10) n'(9)  Eo(R-L)(11)

1 0.7 2.56 19.1 2.18 17.9
1 1.0 2.39 8.2 2.08 9.2
.05 0.7 3.27 25.1 2.88 23.9
.05 1.0 3.09 12.2 2.78 11.2
.01 0.7 4.89 37.1 4.49 37.9
.01 1.0 4.71 18.2 4.39 17.2

In the present context of completely specified distributions there is no sampling theory
to develop in order to use the confidence set (iv). However, it seems a difficult problem to give
a reasonable approximation for the related set defined in (v). A crude approximation to (3)
which might be used as the first step in an iterative numerical or Monte Carlo scheme is to
replace S, by a Brownis: motion process W (t) with drift —(62/2)sgn(t) and variance §% and
replace the sum in (3) by an integral. One easily sees that the integral over [0,00) has the
distribution given by Pollak and Siegmund (1985, Proposition 3). This can be convolved with
itself to obtain pr(f° exp{W(t)}dt < c7!] = 2671\/c exp(—4c/6%) K1(2671\/c), where K is
the modified Bessel function of the second kind.

Table 2 reports the results of 1000 repetition Monte Carlo experiment with m = 100
and § = 50 to compare the confidence sets C;,Cy, and Cs. It confirms that the analytic
approximation for the expected size of C; given in Theorem 1 is reasonably accurate and

shows that all three confidence sets have about the same expected size.

~

ety et a ety en e e, .
e S Gt T L

N A

RS AN
NIt

1\4

o

Yy

&

t 4
AN '.‘.'.'cl'h F »
'y

ot W T TP
NS

RN RN
LA
s
R
RN

kd

» \'l" A ";:\‘

4

g Te e a
PN
‘: I

-y

'll
(XX NS

N g
’
4000
LAY
’ﬁ h)

"
[4

)
, 7
~/

ol A
w1
[

P
AR
,

R E
“'.4'_./‘.- '.' .
*

S 4.




2,

2,

“

0

N

!

o

~ ]

-

» . > :
4 Table 2. LN,
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4 .

) Monte Carlo Comparison of C,, C, and Cs *_}:-_::

) RS

s DRy

L‘ . s

X - RO

\: R)

3 C, Cs Cs :

‘: a (nominal) ) & Eong' & Eo|C4| c & Eolel

.10 .07 .080 18.8 .084 19.5 .010 .092 193
[
. .10 1.0 .098 9.6 .085 10.3 022 .113 9.4
e
:: .05 0.7 .041 24.6 040 25.2 .005 .047 26.0

' .05 1.0 .048 12.6 037 13.2 011 .052 12.6

:‘: Although the confidence sets defined in (ii)-(iv) perform similarly on the average, they can :.-

treat individual sets of data differently. Figure 1 displays two simulated log likelihoods with
'y m = 101, 5§ = 50, and § = 0.7. The horizontal line defines the 95% likelihood ratio confidence ;'.-:':-::

. '.'.':'.“.
L set (ii). In accordance with the approximation (7) it is drawn 3.27 units below the maximum DORAY
- N

I of the log likelihood function. NOCA
= NASCY
- In the voper part of Figure 1 the one major peak of the log likelihood is fairly sharp Z'“.:.
1" --..l. .l‘ it
- with the consequence that all the confidence sets are about one half their expected size of 25. ::}::-:

e, AN

" The confidence interval defined in (iii) has one point less on each end than the likelihood ratio RN
" ..‘.I-J:.

confidence set. The formal Bayes posterior set, C;, makes a smaller adaptation to the peaked :
=

. log likelihood; it contains four more points, including the local maximum at 63. The confidence
. set Cs is the same as the likelihood ratio confidence set.

0

0 The lower part of Figure 1 contains a comparatively flat log likelihood with two distinct
<, peaks. The likelihood ratio confidence set contains 33 points. The interval modification is now

.:.‘ slightly larger because it contains points of relatively low likelihood: 44, 45, 56-58. Again the
~
:: formal Bayes posterior set adapts less to the departure of the log likelihood from its expected

A

) shape and this time contains four fewer points than the likelihood ratio confidence set.
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:' In general, the interval modification (iii) is usually slightly shorter than the likelihood ratio
:,' confidence set but can be considerably larger. The formal Bayes posterior set is usually larger
than the likelihood ratio when both sets are small and smaller when both sets are large. This
" suggests that there may be recognizable subsets making the conditional coverage probability i ” :;'
\ of the likelihood ratio set differ from its nominal value. The confidence set Cs can look rather '_ N
: foolish conditionally. If all the p; are very small and about equal, it can deliver a small, or -'_Z'
perhaps empty confidence set while the other methods recognize the data as uninformative L
::. and yield large confidence sets. Presumably this occurs with small probability. E:?: ]
: Overall the evidence given here does not seem persuasive for choosing among the confi- :::::E: ‘
dence sets (ii) - (v). A possible conclusion is that in more complex problems one may reasonably E;:;;
o use whichever method seems most easily adpated to the problem «t hand. Whe the distribu- i}::.::"
E tions F and G are unknown, but can be imbedded in a common exponential family, one can use ‘::":.
. el
5 a conditioning argument to obtain exact likelihood ratio confidence sets. This is the subject ;:’ Y
of the next section. 3
z
‘ 4. The Likelihood Ratio Method for an Exponential Family.
’
7 Now suppose that F and G can be imbedded in an exponential family of the form
:;: dFy(z) = exp{6z — ¥(0)}dFo(z)
g relative to some fixed distribution Fy, which without loss of generality can be standardized
.:': to have mean 0 and variance 1. Thus for some unknown 8y # 6, and je{1,...,m},zi,...,z;
» have distribution Fj, and z;,,,...,Zm have distribution Fy,. The probability on the space of
- z1,...,Zm will be denoted by pr, with the dependence on j,8g, and 8, suppressed.
. Several writers, e.g., Davies (1977), Siegmund (1986), and Worsley (1986), have observed
E that one can extend the likelihood ratio method (ii) of Section 2 to obtain a confidence set
‘ : for j in the presence of the unknown nuisance parameters 8,8, as follows. Let H(z) =
- sups {0z — y(8)},Sn =21+ ...+ zn, and
2 Anm = nH(n"1S,) + (m = n)H{(m — n)"}(Sm — Sa)}. (12)

11
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The likelihood ratio test of the hypothesis that the change-point is j has acceptance region of

the form

Aj = (max An,m - Aj.m < k) .
n

By sufficiency the conditional probability of A; given (S;, Sym) does not depend on 8y, 8;. Hence
if one chooses k = k(&;, £2) so that

pr(4;lSi =&, Sm=&)=1-«a

for all &3, £3, then the set of values j which are accepted by the test is a (1 —a)100% confidence

set.

It is not actually necessary to solve for k(£1, §3) in order to determine the confidence set.
Given S; and Sp,, Aj m is constant, and hence the confidence set is most easily determined as

the set of j for which

pr{m'?x Apm < (m'?.x A,._m)ob,|S,~,Sm} <1-a. (13)

An approximation for this conditional probability which seems adequate for many cases is

given below.

Note that one might also define A; as the acceptance region of the likelihood ratio test in
the conditional model given S,,. The unconditional test is often simpler analytically, but the
conditional one may turn out to the preferable. In the simplest case of a normal distribution
with mean 8 and variance 1 there is no difference between the tests. Similarly one could

substitute Pettitt’s (1980) test with acceptance region of the form

A= {m'?x|(nSm/m ~ Sp)| = |(FSm/m - Sj)| < a}. (14)

Given (Sj, Sm) the random variables maxn<; An,m and max;<n<m Anm are conditionally

independent, and hence the left hand side of (13) is of the form
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¥ pr (max Anm < alSj, .S',,.) pr|{ max Apm < alS;,Sm . (15) "",-J:':.
" n<j j<n<m 30
e,
2 These two probabilities present similar computational problems, so it suffices to consider the : >,
3
v second one, or equivalently \::.\_{:
V) Y
~ e
. \..: .f'
B pr (,'2’3&’5.. Anm > a|Sj, Sm)- (16) RN
. . . » . 3 3 » . ‘\-- !
:ﬁ In the special case that Fy is the normal distribution with mean  and variance 1, the I‘.
“n - e
- probability (16) equals oy N
x
N -:\J\
- (nSm/m — S,)? ) ko s
r e S, -S; = 17 T
w P {jg}ixm 2n(1 - n/m) 9| jSm/m = S =1, (17) ::&.-s
R L . N a5
)E for which Siegmund (1986) gives an approximation under the assumptions that 7, e, and ¢ are i:;:
‘ all proportional to m, and - &:g
~ R
F -
I RO
- 2 2ppi0r
A ¢ =2a-£/{j(1 - j/m)} (18) Tl
-l =
<. . . . . . . . . R
& is asymptotically a positive multiple of m as m — oco. A somewhat simpler approximation is ;}' -
obtained by assuming that ¢? = o(m). For ease of reference we record the result as Theorem )
‘ \ l- -.l-..l
> e
: 2. .'.1.:,’-'
-: .:'_.'-:.
x '. 5
Q Theorem 2. Let z;,..., 2z, be independent standard normal random variables and S, =
. z1+...+zn. Let min(j, m - j), a, and £ be proportional to m as m — co. Suppose ¢? defined
‘ by (18) diverges to +co but ¢ = o(m). Then the probability (17) is
)
» R e~
~ . . N RN
- ~ v[§/{§(1 - j/m)} exp(-c*/2) (19)
-.: ;:-'{f:
;j as m — oo, where v is defined in (4) and given approximately by (5). '\-j.:-ﬁ:
- “
! LN
o From the simulations reported in Table 6 of Siegmund (1986) one can see that (19) E"_j:
i..'1~\‘
:\ is reasonably accurate for the range of j,m, and £ considered there. Presumably it is less }:-';:_
AN
. LAY
accurate for larger ¢ and/or smaller m, but it seems adequate for many cases of interest. PANAN
; oA
13 -
-, AN
. :_\ :_\:
o, .' o
e L oS e s




According to the approximations (19) and (5) the confidence set defined by (13) is the
set of all ¢ such that

{1 — exp(-.583[2Ai m/{i(1 — i/m)}]/% - (max Apm — Aim)) }2 <l-o. (20)

Even when one questions the accuracy of (19) or when the data are not normal, the central limit
theorem suggests the use of (20) as a first approximation. A better approximation, simulation,
or numerical methods can be used to decide whether values of ¢ on the boderline according to

(20) should be included in or excluded from the confidence set.

Note also the formal similarity between (19) and (6). To the extent that {{(1—1/m)}!/2is
nearly constant over the values 1 of interest, e.g., when the likelihood ratio statistic is sharply
peaked and hence the confidence set is small, (20) shows that the confidence set consists of
those ¢ for which A; s, is within some distance of max, An m, Which can be displayed graphically

as in Section 2.

Figure 2 shows the log likelihood ratio statistic and the approximate cutoff for a 95%
confidence set for the same simulated data as in Figure 1. Qualitatively the cases of known
and unknown § look quite similar. Usually the confidence set is larger in the case of unknown
8, and this is indeed so in the lower plot. However, the reverse is true in the upper plot,
presumably because the procedure in effect estimates § and then acts as if the, in this case

large, estimated value is the true one.

Returning to the general exponential family, if we let a = mag and condition on S =
€2 = méao, we see from (12) that (maXj<n<m Anm > @) = r___',l {{Sn > mba2(n/m)} U {Sa <
mby(n/m)}],

where by(t) < b2(t),0 < t < 1, are the solutions of

tH{t™b:(t)} + (1~ ) H[(1 - £) 7 {€20 - bi(t)}] = a0. (21)
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Figure 2. Simulated Log Likelihood Ratio Processes, § Unknown.
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Usually one is interested in evaluating (16) in cases where S; = £, is fairly close to one of the
boundary curves mb,(j/m) or mby(j/m). Thus the probability of crossing the other can be
neglected, and it seems reasonable to develop an approximation in which the distance from §;
to the relevant curve is small in some sense. See Figure 3. Our problem reduces to approximate

evaluation of probabilities like

pr(Sj+i > mba{(j + 1)/m} for some i < m — j|S; = &1, Sm = &2). (22)

The mathematically convenient interpretation of the condition that mby(5/m) — £; be

small is that it be O(,/m).

Siegmund (1985,1986) develops a method for approximating boundary crossing proba-
bilities which can be adapted to the present context. A suitable result is given in Appendix

B.

As an illustration we consider the British coal mining accident data of Maguire, Pearson,
and Wynn (1952), as extended and corrected by Jarrett (1979). Worsley (1986) has analysed
the original data and determined the likelihood ratio confidence set by numerical computation
of (15).

The data are intervals in days between accidents in British coal mines in which at least
ten deaths occurred. Jarrett’s (1979) data involve m = 190 intervals from 15 March, 1851 to
22 March, 1962, a period of 40,549 days. Under the assumption that the intervals y1,...,ym
are independent and exponentially distributed with a change after the j-th observation in the

mean time between accidents, we shall determine a likelihood ratio confidence set for j.

The likelihood ratio statistic is max, Apm = max,[mlog(Wpm/m) — nlog(W,/n) - (m -
n) log{(Wm — Wa)/(m —n)}], where Wp, = y1 +...+ yn. For Jarrett’s data the maximum value
equals 35.6 and is assumed at n = 124 in the year 1890. the approximation (20) gives the set
{116,117,...,128,133} as a 95% confidence set for the change~point. This corresponds to the
nterval from 1887 to 1893 together with an isolated ppoint in 1897. One may want to use the
presumably more accurate probability approximation given in Theorem 3 in Appendix B to

check some of the borderline cases.
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Figure 3. Conditional Boundary Crossing Problem.
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For example, for j = 129, A, ; = 32.4, so (20) yields .961, and 129 is not included in the
confidence set. From (21) with a = mag = 35.6 one easily calculates the ingredients to apply
Theorem 3 in Appendix B and obtains as an approximation to (15) (1 — .011)(1 — .024) =
965, which confirms that 129 should be excluded from the confidence set. Note that this
approximation and the normal approximation, (20), are reasonably consistent, although the
normal approximation involves two equal factors while this one contains two unequal factors,
one smaller and one larger than in the normal approximation. For j = 128 the approximation
by means of Theorem 3 for the second factor in (15) is 1 — .057 = .943, and hence 128 is
included in the confidence set regardless of the value of the first factor. After examining two or
three values of ¢, one quickly concludes that the approximation of Theorem 3 yields the same

confidence set as the crude normal approximation,

Application of (20) to the original Maguire, Pearson, and Wynn (1952) data gives pre-
cisely the same confidence set which Worsley computed numerically. However, because of
discrepancies between the two data sets, the years covered by the two coonfidence sets are

slightly different.

Raferty and Akman (1986) give a flat prior Bayesian analysis of these data. It appears
from their calculations and Figure that a highest posterior set estimate for the change—point is
the same as the confidence set computed here. Presumable such a postesrior set is, under some
general conditions, approximately a confidence set for large m, but the elegant exact relation of
(1) and (2) is no longer valid. It would be interesting to give some precise asymptotic results,
which would serve to extend the method (iv) in Section 2 to the case of unknown nuisance

parameters.

Cobb (1978) has suggested an alternative extension of method (iv) to deal with nuisance
parameters, but it contains some arbitrary features which may make it difficult to implement

with small or moderate sample sizes.

5. Joint Confidence Sets.

The likelihood ratio method can also be adapted to give joint confidence sets for the

change—point j and some function § of the parameters 85 and #;. In this section we consider
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e the simple case of normally distributed z; having mean #y or #; according as 1 < ¢ € j or ‘E:.' {:\:j:
7 < i < m and variance one, and take § = 8; — 6. .::::.,5:23

N

d The acceptance region of the likelihood ratio test of the hypothesis that the parameters &ﬁi’]
are 7 and § is “Tr\;-\j

Ajs = [sup Aim = 6{jSm/m = S; — j(1 - j/m)/2} < ¢*/2)], RN
1]

where Aim = (i1Sm/m — S$;)2/{2i(1 — i/m)} and ¢ = ¢(7, §) is chosen to satisfy e

O YA SN e
<
i

pr(Aj'a) =l-a«a \
RS
for all 7 and 4. Note that i
= sup Aim ~ 6{jSm/m — S; - 2716(1 - j/m)} (23) R
-, [ Te .
- o
(iSn/m = S; = §5(1 = j/m)}?
; =supAim — Ajm + - : ; LAY
g 2j(1 - j/m) 1S
A . . , o . . . B
f_ and since the first difference on the right hand side is necessasrily non-negative, one obtains s
. g
Y o
T
pr(Ajs) = pr[|7Sm/m = S; = 65(1 - j/m)| > c{5(1 - j/m)}/?] P
AP
E[pr( A5 6liSm/m ~ 53); iSm/m = §; ~ 65(1 - i/m)| < eli(1 - 5/m)}?).  (24) L
AR
LN 4
The first term on the right hand side of (24) is exactly 2{1 — ®(c)}. According to Theorem - o

)
o
l'. “

'y

pr(45 5liSm/m ~ ;= €) R
~ 20[€/{5(1 - j/m)}] exp [-c2/2 L e85 - 5/m)p IS

2j(1-3/m)

provided the exponent diverges more slowly than m as m — oo. Substitution of this approxi-

Y

)
"(

mation into (24) yields

-" 8
Xr)

4

pr(45,) = 2(1 - #()} + 20(0) [ w[s + 2/(G(1L - 3/m)}]ds o7

2= 2{1 - ®(c)} + 4v(6)cep(c), (25)
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if we assume that ¢/{j(1 — j/m)}!/? is small. Here  and & are the standard normal density ?‘_;:f_ﬁ

"

and distribution function respectively. ¢$$~a
A '(:

Nl

Using (25) one can easily find an approximate confidence set by trial and error. Given 1, N iy
one sets § equal to the estimator & = (iSm/m — S;)/{i(1 ~ i/m)} and finds the value of ¢ for ’.-4-.»1
.f'.':\':
which (25) equals a. Thus by (23) one finds whether that ¢ and some § are in the confidence -.'-j-:-'j:-i
set. Then one iteratively finds upper and lower bounds on 6 for that particular value of 5. In :::.-_,.':::}
N
principle this must be repeated for each 1. VL :‘1
A,
An extension of this method to non-normal exponential families requires consideration of -:-T:{.{\

AN

special cases. The generalization of {23), in almost obvious notation, is :-'.:::::-

=2

Sup Aim — Ajm(5) L
) -'.:

= (s!,:p Aim — A,-,,,.) +{Ajm— Ajm(6)}.

If § is a function of the difference in the natural parameters of the exponential family, e.g. if the "..-.. :
parent populations are Poisson and § is the ratio of their means, by computing probabilities .!;_‘,r\
conditionally given S,,, one obtains a statistic whose distribution is parameterized by §. On ‘:.:::::E "
the other hand, if the parent distributions are exponential and § is again the ratio of their :':‘\_}:-:
means, because of invariance of the two sample problem under common changes of scale, the g

, 1w

unconditional model and unconditional distribution of Ajm — Ajm(6) are appropriate.

The sampling theory seems rather complicated. Presumably a normal approximation

using (25) suffices when m is large enough, but this needs to be investigated.
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APPENDIX A

Y

Informal Proof of Theorem 1.

E 113221

" -‘

We consider only the confidence interval [L, R]. The proof for the likelihood ratio confi-
dence set is similar and somewhat simpler. Since the confidence set is equivariant, it suffices

to consider the case j = 0. To simplify the notation we shall write pr and E instead of Py and

LA,

Ey, n instead of n', S, instead of S,, and take § = 1. Recall that M = SUPp>0 Sn-

v
s rt

For arbitrary ng = 1,2,...

Y,
-

RN RS  LWNNNNEY ' PARYOAMAAN A

E(R—L):ipr(LsnsR)=pr(L§0_<_R)+2§:pr(L5nsR)

—00 1

=pr(L<O< R)+ 2i{pr(R 2 n) - pr(L > n)}
1

o f:_"\:,.-.
= l+22pr(R2 n)+o(l) asn—oo }'}.,'\-
1 }}:;’x
ol no -'.‘:.-:':
=1+ 2no+2 Z pr(R > n)—2Z{1-—pr(R2 n)} + o(1). (A1) RS
no+1 1

e :
XA

For positive n, by the definition of R

W s
& /.f
L]

I R e e e AU

AR

>n

= // pr {S,.edf, max(S; — S,,)edy}
[=7.0)x[0,00) i2n

X pr (org&xns. <n+E+y|Sa f) pr (r?saoxs. < n+£+y)

pr(R>n)=pr (sup S; <supS; + rl)
<n

= // pr(Sned€)pr(Medy)pr ( max S; <n+ &+ y[Sa = 5) pr(M <n+€+y)
[-n,0)x[0,00) 0<i<n

N AT R RN WA N\ W RN NN Sl

tete

= // pr(Sne — n + dz)pr(Medy)pr <m_ax Si<z+ylSan=2z- n) pr(M < z+vy).
(0,00)%[0,00) 0<i<n

)
-'-

Let ng = |2n] and k =n — ng, so
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It may be shown that the contribution to the two series in (A1) from values of z and k outside

) the range |k| < n?/3, |z + k/2| < n*/3 is negligible, and inside this range

& A

S

pr (05?51;‘::& Si> T+ YlSng+k = —n + z) —pr(M > z+y)

i
a'e,

converges uniformly to 0. Hence for the purpose of evaluating (Al) asymptotically, pr(R >

/,

,es

¥
1"{'.-_ .

ng + k) may be replaced by

v v Y Y

s

"2/8 0o z
L /; (p{(n—o-:%f/—z-} (no+k)"Y3dz pr(Medy){1-2pr(M > z+y) +pr?(M > z+y)}.

For k = 0 this integral converges to 1/2. The terms in (Al) for k = +1,+2,... may be paired,

and after some calculation one obtains

BASAN

P

FRCN

RO

Zpr(RZ"0+k)_z:{1—pr(R2no+k)} =-1/2 SN
k21 k<o e
+ 2[9{2‘11‘:/(110 - k)1/2} _ Q{Z—lk/(no + k)l/Z} ;-;:.

k21 o

[e <] co
- 2n;1/2<p(2_1/né/2)/; /(; pr(Medy){2pr(M > z + y)

- pr¥(M > z + y)}dz + o(1).

A Taylor series expansion, approximation of Riemann sums by integrals, and substitution of

the result back into (A1) complete the informal proof of Theorem 1.
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APPENDIX B

Boundary Crossing Probabilities.

This appendix is concerned with approximations to boundary crossing probabilities like

AL Ak

(22). The notation used here is independent of the body of the paper.

\L

Let z1,z,,... be independent random variables with distribution function of the form

dFy(z) = exp{0z — ¢(8)}dFo(z) (A2)

MRAA Y AL LA

with Fp standardized to have mean 0O and variance 1. Let S, = z; + ...+ z,. To emphasize

dependence of probabilities and expectations on § we write pry and Ej.

Let bg > 0,5(0) = 0, and define

)

T =inf{n : S, > by + mb(n/m)}.

[+
X
b
-
L~

We seek approximations as m — oo for

-

Pro(T < mo|Sm, = moo),

where mg = mtg for some fixed o > 0. We assume that & < b(20)/to and &o < b(t)/t uniformly

I RARAATAAN

on compact subsets of [0,2). Let ¢y = 4'(0),c2 = b"(0)/2. Note that £ < ¢; and locally near
0

Sl ala]e,

mb(n/m) = c1n + can?/m + 0(n*/m?).

Define 8 by ¢'(60) = & and 8, > 6, by

.'-,. ’- ,\' g'\ ~

¥(61) — ¥(60) = e1(61 — b0)-

Vo

Let & = 1/)'(01),0’.-2 = 1[)"(0.') (I. =0, l), and A = 8, — §,.

’l’l

Let t4(n)(t-(n)) =inf{n: Sn — nn > (<)0}, and put

*
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vy = prg {t+(c1) = oo}pry, {t-(c1) = +oo}/{A(&1 — 1)} (45)

Theorem 3. Assume that for all 8, for all sufficiently large n the n—fold convolution of £

has an integrable characteristic function. Suppose by — o0 as m — oo and by = O(y/m). Then

pl‘o(T < molsmo = mofo)

~ vy exp[—Aby — mT1b3 (&) — 1) TE{(& — €0)%/(203) + Acs}]. (As)

In order to evaluate the constant v, defined in (A5) it may be helpful to use the local

expansion for small ¢; and §y

ve = exp(-Apy) +o(A?), (AT)

where p, = E053+(0)/(2ES¢+(0)). See Siegmund (1985, Chapter X) for a justification and
method for computing p; numerically. In the normal case this is the approximation (5). In
the exponential case the standardized generating distribution dFy(z) equals either exp(—z +
1)dz (z > —1) or exp(z — 1)dz (z < 1), and the approximation (A7) is exp(—A) or exp(—A/3)
respectively. These approximations were used in the numerical example in Section 4.

If by = o(y/m), the right hand side of (A8) is just Cramér’s classical approximation to the
probability of ultimate ruin, as follows. Suppose b(t) = c1,t, and consider pry (T < o0). By
(A2) and (A4) the likelihood ratio of zy, ..., 2z, under 6 relative to 8, is exp{—A(Sn — c1n)}.
Hence by Wald’s likelihood ratio identity

prg, (T < o0) = exp(~Abo) Eg, exp{~A(St ~ by — a1T)}, (A8)

and by the renewal theorem

lim Ej, exp{—A(ST - bg — a1T)} = vy,
bo—o0
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where v, is defined in (A5). See, for example, Siegmund (1985, Chapter VIII) for details.
Hence (A6) has the interpretation that if by = o(y/m), asymptotically the curvature of the
boundary plays no role and the conditional probability given S, = mo&; is effectively the
unconditional probability pry, having the drift £ = '(6o).

In general the first term multiplying m~1b3 on the right hand side of (A6) corrects for
the fact that we have a conditional, not an unconditional probability and the second corrects

for the curvature in 4(t). In fact, by (A3) one can modify (A8) to read

exp(Abo)pry, (T < mo)

= Ej,(exp[—A{St — bp — mb(T/m)} — AcsT?/m + O(T%/m?)|; T < my).

It is easy to see that by T — (£, —¢;)~! in prg,—probability, and by Theorem 9.45 of Siegmund
(1985) the limiting distribution of the excess over the boundary, St — by — mb(T/m), is the
same as in the linear case. This explains the correction for non-linearity. The correction to
account for the conditional probability is obtained by a modification of the proof of Theorem

8.72 of Siegmund (1985). The details are much more complicated and have been omitted.

To illustrate the approximation (A6) suppose that yi,...,ym are independent standard
exponential, W, = y; + ...+ yn, and consider Pettitt’s test with acceptance region (14), or to

emphasize the invariance of the exponential scale parameser

{| max(nWn,/m = Wa) /(W /m)| < a} .

From the theorem one obtains the following approximations:

pr{ max (1 — Wjsi/zo) > a — j|W; = jyo,Wm = mzo}
o<i<m—j

= exp[~A(bo + 1/3) — 2765 A /{(m - 5)61}],

where by = a — j(1 ~ yo/%0), §o = —7(1 — yo/20)/(m - j), b0 = &/(1 -~ §0) <0, and 8, >0

satisfies
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0, — log(1 + 8;) = 8o — log(1 + 8o);

pr {gy(a‘az(: - Wi/zo) > a|lW; = jyo,Wm = mzo} = exp{—Abo+1) — 2"163A2/(j9'f)},

where 3 = a — 5(1 — yo/z0), &0 = — (1 — yo/20), 00 = £o/(1 + &o) < O, and ;1 > O satisfies

81 + log(1 - 91) = 6o + log(1 — 6y).

The local expansion (A7) for v is used in both these approximations. The analogous approxi-
mations for the likelihod ratio test are similar but slightly more complicated since they involve
both the first and second derivatives of the boundary curve b(t) at t = jm, which are easily

obtained from (21).

If we invert the Pettitt test to obtain a 95% confidence set for a change-point in the coal
mining accident data, we find the same confidence set as in Section 4, with one exception. The
attained significance level of j = 129 is .039 + .014 > .05, so 5 = 129, corresponding to the

year 1894 is included in the confidence set.

26

P T T, e .
AT AT LR SRR AL RN T

'~~--..v-. CAAEACA TN

L

s
J\ <

*s
N
A
AS
N

-

13 l:u"

A

,.-"'n .

v
o
a

2k

v

’
[ _\,|

',
A

AN
'.S"n'\'\'v

P A AL
55N

.Q.

L3

i
v

., .','.'."/:'F

-
A
[ B
LA B

O
‘s
ety

22l
N

ORK 2. 7]
» {:l J 1
Y

a0 'y
e,

.l
2’

.
¥
‘.

2k

ot
’l

]
(s
e a e

a o 4
e
7

L4

2
»
r

k|
T id
viavedd |

Ly ~'
L)
A PP

>

X

o
.

A

%

]

. %
v
‘Y
P
-

-.i'l
l.‘l
»

[

7
"' a

“ua
[

M 1S

TR T PPN S e
e e T A Ta e AT e A T



5" '
(;n R

X

o

f'\‘.-;a

2

e

o

P

References \’\,

:‘:'.'\‘-.'_:

NG

Cobb, G. W. (1978). The problem of the Nile: conditional solution to a change point problem, :“l‘

Biometrika 62, 243-51. NE,

R

RN

Davies, R. B. (1977). Hypothesis testing when a nuisance parameter is present only under the :j:_\:'.j

alternative, Biometrika 64, 247-54. RS

Fisher, R. A. (1934). Two new properties of mathematical likelihood, Proc. R. Soc. A 144, .j::.:f.

285-307. e

AL

Nty

Pollak, M. and Siegmund, D. (1985). A diffusion process and its application to detecting a b, .

change in the drift of Brownian motion, Biometrika 72, 267-80. :::::::_f-

_':_*-:

Hinkley, D. V. (1970). Inference about the change point in a sequence of random variables, »"_‘

e,

Biometrika 57, 1-17. e

-"‘-.-'-

o

Hinkley, D. V. (1972). Time ordered classification, Biometrika 59, 509-523. NN

oy

Hooper, P. M. (1982). Invariant confidence sets with smallest expected measure, Ann. Statist. A
r.

10, 1283-94. N

RSO

Hora, R. B. and Buehler, R. J. (1966), Fiducial theory and invariant estimation, Ann. Math. :;.-

Statist. 37, 643-656. e

- d

Jarrett, R. G. (1979). A note on the intervals between coal-mining disasters, Biometrika 66, f:'-'_:::i:

\-. .

191-3. :;.;:j;

L::'s'.\

Maguire, B. A., Pearson, E. S., andd Wynn, A. H. A. (1952). The time intervals between 2 "y

industrial accidents, Biometrika 38, 168-80.

I
oY

I
,Lo.

.,.,.
R
2 a 3

v

Pettitt, A. N. (1980). A simple cumulative sum type statistic for the change-point problem

with zero—one observations, Biometrika 67, 79-84.

o 'y

»

. l.{l:
P

Raferty, A. E. and Akman, V. E. (1986). Bayesian analysis of a Poisson process with a change-

LA
'l
‘l

P4
.
P4

point, Biometrika 73, 85-90.

e ]

» ,.
.

bt
.
&

™~

-3
'
A

1

.
’’
s AN,

. e AN L™ ¢ e e e T EIPAT R LY -
O G S S N R A AR AN




[
4
4
’
a
>
A
[é
-
o
™
[}
u
>
=
1]

N
S
]

T~
i \'

N ' >
e
3 for
N o
- '.\'..."
) ’E:--::i
n Siegmund, D. (1985). Sequential Analysis: Test and Confidence Intervals, Springer—Verlag, ‘.»'\.r:
~ NN
e New York-Heidelberg-Berlin. -.::;:
e e
N Siegmund, D. (1986). Boundary crossing probabilities and statistical applications, Ann. Statist. A
3
o 14, 361-404.
o, .
»
" Stein, C. (1965). Approximation of improper prior measures by prior probability measures, g
v .
. Bernoulli, Bayer, Laplace, Anniversary Volume, J. Neyman and L. M. Le Cam, eds.,
' -
. Springer—Verlag, New York—Heidelberg-Berlin, 217-240. HURGY
\ RS
o RCSEY
: RN
) Worsley, K. J. (1986). Confidence regions and tests for a change—point in a sequence of -_.'-:.t
-
o
X exponential family random variables, Biometrika 73, 91-104. ;_'-':;
& koo
“ e
R o
2 A
N KA
) N
2 REN
-~ e
R
. T
N
: R
] }ll‘.l‘
‘ E
\ PN
. NN
' 'J‘.:o’_:c
'.' e,
\. : -n'\.l
~ e
ol
)
v
'
\
.
g 3
S Y
«
1 f.:.-:'.'_'j
, <
Y :'.;.-;'.f
28 - A
‘ N
-, :.:\::.
.f.(-."‘.f e, £, 7 et I . .t PR S B LR N L R AP P B T ".‘\.‘\
el P Ll e e e R B A PP A T e e e L e e T W LN N




a2 sw
et

Pl

O LALALAAL] By

e Ty

ARAE] LY

Yighihdulie i R N aa Rt R R N e B M R PO e I Aot A M AR AN S AN A A i SN S P et daer e s e e F x>
Rl ST b D R L S R R MR LRI et
. - BN

]
INCLASSIFIED S~
SECUMTY CLASSIFICATION OF THIS PAGE (When Dera Fnteced) -..,:
READ INSTRUCTIONS O
REPORT DOCUMENTAT!ON PAGE BEFORE COMPLETING FORM -:_.:
1. REPORT NUMBER 2. GOVY ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER :._::\
39 A
&, TITLE (and Subtitle) 3. TYPE OF REPOAT & PERIOC COVERED :.~“.
WY
CAS
CONFIDENCE SETS FOR A CHANGE-POINT Technical :-":'-‘
o
6. PERFORMING ORG. REPORT MUMBER DN
'\-P\d
> N
N Tar
7. AUTMOR(e) 8. CONTRACT OR GRANT NUMBER(s) Y
; . N
David Siegmund N00014-77-C-0306 AR

9. PERFORMING ORGANIZATION NAME AND ADDRESS
Department of Statistics - Sequoia Hall
Stanford University

Stanford, California 94305-4065

0. PROGRAM ELEMENT. PROJECT, TASK
AREA & WORK UNIT NUMBERS

NR-042-373

1. CONTROLLING OFFICE NAME AND ADDRESS

12. REPORT DATE
October 1986

Statistics & Probability Program Code (411 (SP))
Office of Naval Research 13. NUMBER OF PAGES N
Arlington, Virginia 22217 28pp. S
TS, MONITORING AGENCY NAME 8 ADGRESS(I! different from Controlling Office) | 1S. SECURITY CLASS. (of this report) }»"J
b
Unclassified AOANS
0
1Se. DECL ASSIFICATION/ DOWNGRADING ;\__-._
SCHEDULE ‘,{--_\_
PN
el
16. DISTRIBUTION STATEMENT (of this Report) :._.; -
-~y
T
Approved for public release; distribution unlimited. ‘\ S
17. DISTRIBUTION STATEMENT (of the sbetract entered ‘hl Block 20, Il difterent from Report) .'\ ',
'
Hvw
"
PR

,

18. SUPPLEMENTARY NOTES

19. KEY WOROS (Continue on reverse side If necessary and identify by block naumber)

The method based on the likelihood ratio statistic

oy

20. ABSTRACT (Cemtimus an reversn ofde I necossary axd |densify by block number)
Several methods are discussed for confidence set estimation of a change-point
in a sequence of independent observations from completely specified distributions,

independent observations from a one parameter exponential family. Joint
confidence sets for the change-point and the parameters of the exponential family

is extended to the case of

SN
are also considered, PN
".'t’.':ﬂ

AN

rons

DD ,Gax n €DITION OF ¥ NOV 63 IS OBSOLETE UNCLASSIFIED -‘::
SECUMTY CLASSIFICATION OF THIS PAGE (When Dara Entered) AR

- - - » - - - - ) N \
R T TR T e e e N N T R L e, SN N e YAt L tactt e near e~ S
SN AN AN . PO COAGN S FURSAL AT AR S A S S I R R T I I AT N N A A T SRR 0 |
AT A N N, .£:'A}I}A_'Ja)}.h‘.'ﬂ.'hf}$}i§A\.u\.r\.n Fis S Mo d A



v Rt el

C ot v e s v A b

N TaT

L

AT ACetaTa

DALY

.

’
-
ISTIIAP A

-

Alaatetun

S

- : : LRI AT XA A ..r..r.mr.urimﬁ\fL.VJ.J 1 AR A A SE S 1ol o o —



